The Inhibiting Bisection Problem*

Ali Pinar' Yonatan Fogel Bernard Lesieutre
Computational Research Div. Dept. Computer Science FEnvironmental Energy Tech. Div.
Lawrence Berkeley Natl Lab. SUNY Lawrence Berkeley Natl. Lab

Abstract

Given a graph where each vertex is assigned a generation or consumption volume, we try
to bisect the graph so that each part has a significant generation/consumption mismatch, and
the cutsize of the bisection is small. Our motivation comes from the vulnerability analysis of
distribution systems such as the electric power system. We show that the constrained version
of the problem, where we place either the cutsize or the mismatch significance as a constraint
and optimize the other, is NP-complete, and provide an integer programming formulation. We
also propose an alternative relaxed formulation, which can trade-off between the two objectives
and show that the alternative formulation of the problem can be solved in polynomial time by
a maximum flow solver. Our experiments with benchmark electric power systems validate the
effectiveness of our methods.

This paper is being submitted for a regular presentation.

*This work was supported by the Director, Office of Science, Division of Mathematical, Information, and Compu-

tational Sciences of U.S. Department of Energy under contract DE-AC03-76SF00098.
fContact author. One Cyclotron Road MS50F, Berkeley, CA 94720 Email: apinar@Ilbl.gov

1 Introduction

Robust operation of a distribution system requires identifying its vulnerabilities, that is likely events
that can significantly reduce the transmission capability of the system. Many distribution systems
such as the electric power, gas, and water distribution systems can be most naturally represented by
graphs, where the generators/sources, consumers/sinks, and line/pipe intersections are represented
by vertices, and lines and pipes are represented by edges. Most vulnerabilities in these systems stem
from a loosely connected subsystem, with a significant generation/consumption mismatch. Due to
this mismatch, this subsystem needs to be in strong interaction with the rest of the system. The
lines or pipes providing this interaction are critical, since they need to operate at or close to their
limits. The slack created by the failure of one of such these lines/pipes may not be picked up by the
remaining lines, resulting in an overall system failure.

In this work, we address the problem of finding subgraphs with significant generation/load mis-
match that can be separated from the rest of the graph by removing a small number of edges.

Formally, we study the following problem.

Given a graph G = (V, E) with a weight assignment on vertices (positive for generation
and negative for consumption), find a decomposition of vertices into Vi and Vo = V\Vj so
that the difference between the sum of weights of Vi vertices and Vo vertices is mazximum

and the number of edges between Vi and Vo vertices is minimum.

We refer to this problem as the inhibiting bisection problem, since we are looking for the smallest
bisection in the graph that maximally inhibits the generator to consumer distribution. The problem
has two objectives, thus we can study two versions of the problem. In the imbalance-constrained
version we look for a bisection with minimum number edges crossing between Vi and Vs, while
we make sure the difference between cumulative part weights is above a threshold. In the cutsize-
constrained version, we maximize the difference between cumulative part weights, while the number
of edges between the two parts is no more than a specified threshold. We prove that the inhibiting cut
problem is NP-complete by reduction from the graph bisection problem. We also propose an integer
programming formulation for this problem, which uses only |V| binary variables. As an alternative
to the two versions described above, we study a relaxed version that can trade-off between the two
objectives through a user defined parameter that specifies the importance of one objective relative
to the other. We propose a technique to solve this version of the inhibiting bisection problem in
polynomial time by a maximum flow/minimum cut solver.

The inhibiting bisection problem is related to the graph bisection problem, but there is a fun-
damental difference: the graph bisection requires balance between the parts, whereas the inhibiting
bisection problem requires imbalance. The balance constraint is what makes the graph bisection
problem hard. If the sizes of the parts were irrelevant, the problem would be easier and polynomial
time solvable as the minimum cut problem. In the inhibiting bisection problem, the sizes of the
parts are relevant, but contrary to the graph bisection problem we are looking for an imbalanced de-

composition. This difference hinders the applicability of tools designed for the graph bisection, often

referred to as graph partitioning, such as Chaco [8], Jostle [16], Metis [9], Party [14], and Scotch [11].
The local search strategies such “move” and “swap” techniques, or the multilevel paradigm are
applicable, but not in a straightforward way.

Another related problem is the network inhibition problem, which is concerned with minimizing
the transmission capability of the system with minimum effort [12]. While inhibition is the common
theme, between the two problems, the inhibiting bisection problem looks for a bipartitioning of the
of the vertices, whereas the network inhibition problem only tries to reduce the size of the minimum
cut in the remaining graph.

Our work is mainly motivated by the vulnerability analysis of the electric power systems. The
flow of power can be described by a system of nonlinear equations, and it is not possible to describe
this flow merely in graph theoretical notation. Nevertheless, in our earlier studies, we showed that
the Jacobian matrix that describes the feasibility boundary of power flow equations has the same
structure as the Laplacian matrix in spectral graph theory [3,4,10]. This means that our model is
accurate, when the equations are barely satisfied. Thus our graph model is effective for vulnerability
analysis of the power system, even though, it cannot be used to accurately characterize the flow [13].
We applied our techniques to study a simplified model of the Western Interconnection system with
13,374 nodes and 16,520 power lines, and identified its vulnerabilities. Our techniques can solve an
instance of the problem in less than a second, making it practically applicable.

The remainder of this paper is organized as follows. In Section 2, we define the inhibiting
bisection problem, prove it is NP-complete, and provide an integer programming formulation for it.
Section 3 studies a relaxed version of the problem, where we allow a trade off between the imbalance
and the cutsize of the bipartitioning, and shows how this problem can be solved using a maximum

flow solver. We present our experimental results in Section 4 and conclude with Section 5.

2 Preliminaries

In this section, we first define the notation used in the paper and introduce the inhibiting bisec-
tion problem. Then we prove the problem is NP-complete, and provide an integer programming

formulation of the problem.

2.1 Problem Definition

Intuitively, in the inhibiting bisection problem, we look for the easiest way to isolate a significant
portion of the generation from the consumption vertices. In other words, we look for a cut in the
graph, which maximally inhibits its transmission capability. Given a graph G = (V, E), where V is
the set of vertices and F is the set of edges, a cut is defined by a bipartitioning of the vertices into
Vi and Vo = V' \ Vi. For a given partitioning of the vertices into V; and Vo, we define the cutset
C(V1,Vh) as the set of edges that cross between the two parts. i.e.,

C(Vi, Vo) = {(vi,v5) : (vj,v;) € E and v; € Vi and v € Vo }

The cutsize refers to the number of edges in the cutset |C'(V1, V2)].

Fach vertex v; € V is associated with a weight w;. When w; > 0, the associated vertex v; is a
generation vertex, and it is a consumption vertex otherwise. We use W (V') to refer to the cumulative
weight of a set of vertices, i.e.,

W(Vl) = Z W
v, €V1

For simplicity, we assume the total generation is equal to the total consumption, i.e.,

W)=Y w=0.
v, EV
Definition 2.1 Inhibiting Bisection Problem.
Given a graph G = (V, E), with weights on its vertices, and a bound on the cutsize B. Find a
bipartitioning of V into Vi and Va that mazimizes |W (V1) — W (Va)|, while |C(V1,Va)| < B.

We refer to the version of the inhibiting cut problem defined above as the cutsize-constrained
version, since we constrain the cutsize and seek for maximum imbalance between the two parts. We
can define the imbalance-constrained version of the problem by switching the roles of the cutsize and
imbalance, where we look for a cut with of minimum size, whose weight mismatch is no smaller than
a specified threshold.

The traditional minimum cut problem is concerned with finding a cut that blocks all paths
between a source and a terminal vertex. Whereas the inhibiting bisection problem allows some flow
to the terminal to find cuts of smaller size. There are two other problems that are related to the
inhibiting cut problem. The network inhibition problem aims at finding the most cost-effective way
to attack a network to minimize it is transmission capability. In [12], Phillips defines the network
inhibition problem as follows. Each edge in the network has a destruction cost, and a fixed budget is
given to attack the network. A feasible attack removes a subset of the edges, whose total destruction
cost is no greater than the budget, and the network inhibition problem is to find an attack that
minimizes the value of a maximum flow in the graph after the attack. While the network inhibition
problem and the inhibiting cut problems are similar in flavor, there is a fundamental difference
between the two, since the inhibiting cut problem looks for a bipartitioning of the vertices, whereas
the network inhibition problem only tries to reduce the size of the minimum cut in the residual
graph. Hence, a subset of the cutset of a solution to the inhibiting cut problem can be a solution
to the network inhibition problem. The network inhibition problem is NP-Complete [12]. Phillips
provides a comprehensive study on network inhibition problem [12].

The graph bisection problem also seeks for a bipartitioning of vertices with minimum cutsize,
however the constraint there is that the cumulative weights of the two parts should be as even as
possible. Graph bisection problem is well-studied, and is known to be NP-complete [7]. Numerous
algorithms for this problem have yielded effective software tools, however these techniques are based
on finding a balanced cut, therefore the algorithmic techniques and the associated software tools are

only of limited applicability for our problem.

2.2 Complexity

In this section, we prove that the inhibiting cut problem is NP-complete by reduction from the graph

bisection problem. The graph bisection problem is defined in [6] as follows.

Definition 2.2 Graph Bisection Problem.

Given a graph G = (V, E) with two designated vertices s and t, and integer B < |E|, is there a
partition of the nodes into two sets S and T' =V \ S such that s€ S, t €T, |S|=|T| = |V|/2 (or
within 1 for |V| odd), and the number of edges with one endpoint in set S and the other endpoint in
set T is at most B?

Garey, Johnson, and Stockmeyer proved this problem is NP-complete [7]. Note that the definition
above of the graph bisection does not include vertex weights, but the NP-completeness of the weighted

version is implied, since the unweighed version is only an instance of the weighted version.

Theorem 2.1 The inhibiting bisection problem is NP-complete.
Proof: First we pose the inhibiting bisection problem as a decision problem as follows.

Given a graph G = (V| E), a weight w; for each vertex v; € V' and bounds B,, and B.. Decide if
there exists a partitioning of V into Vi and Va so that |W (V1) — W (Va)| > By, and C(V1,Va2) < B,.

It is easy to check the correctness of a given solution in polynomial time, thus the problem is
in NP. We show how to solve an instance of the graph bisection problem using an algorithm for
the inhibiting bisection problem to prove NP-completeness. We define the cutsize and imbalance
thresholds so that a balanced distribution of the vertices of the original graph is enforced, and the
cutsize constraint of the inhibiting bisection problem is satisfied only if the cutsize of the bisection
of the original graph is below its threshold B. For simplicity of presentation, we assume |V| is even,
since the proof can be easily generalized for the odd case.

Given a graph G = (V, E) and edge cut bound B as an instance of the graph bisection problem,
we define the graph G’ = (V’/, E’) for the inhibiting bisection problem as follows. The vertex set V'
includes all vertices of the original graph, and we assign a weight of 1 to each. Then, we add a set of
|V |? auxiliary vertices, A, each with weight —M, where M > |V|, and another vertex, ¢, with weight
M|V|?—|V|. Observe that the maximum imbalance is achieved when all auxiliary vertices are in one
part and vertex ¢ and all vertices of the original graph are on the other. Formally, V' =V U AU {t},

and weight w; of vertex v; is defined as

-M if V; € A
wi=4 M|V2-|V| ifv=t
1 ifv, eV

To enforce a balanced distribution of the vertices of the original graph, we add edges from each

auxiliary vertex in A to each vertex of the original graph in V. Formally,

E' = EU{(a;,v;): a; € A,v; € V}

Observe that the cutsize is minimum when all vertices of the original graph are in the same part
as A vertices. However, the imbalance is maximized when vertices of the original graph are in the
opposite part with the A vertices. We set the imbalance threshold B,, for the inhibiting bisection
problem so that all vertices in A are in part V7 and ¢ is in part V5, and we use the cutsize threshold
B, to ensure that vertices of the original graph are evenly bisected between the two parts.

Formally, we claim that there is a bisection of the graph G = (V, E) with cutsize no larger than
B, if and only if there is a bisection of the graph G’ = (V', E') with cutsize B. < |V|3/2 + B, and
imbalance B,, > 2M|V|?> —|V]|.

Without loss of generality, let t € V5. First observe that imbalance constraint is only satisfied
when vertex t and A vertices are assigned to different parts. This brings an imbalance of 2M|V|?>—|V|.
Each vertex of the original graph assigned to V7 decreases this imbalance by 1, and each assigned
to V4 increase this imbalance by 1. Thus, for the constraint on B,, to be satisfied, at least |V|/2
vertices must be assigned to V5. On the other hand, each vertex of the original graph assigned to
Va contributes at least |V|? edges to the cutset, since it is connected to all A vertices. Thus, the
constraint B, requires at least |V|/2 vertices to be on V. Therefore, the constraints on B, and B,
are both satisfied only when V; and V5 both contain exactly |V'|/2 vertices, which guarantees that
the balance constraint of the graph bisection problem is satisfied. The even distribution of vertices
contributes |V|3/2 edges to the cutset, regardless of the particular bisection, which leaves a limit of
B for edges between the vertices of the original graph. Thus the cutsize constraint for the graph
bisection problem is satisfied, only if the cutsize constraint for the inhibiting bisection problem is
satisfied. |

2.3 An Integer Programming Formulation

Let G = (V, E) be a graph, and let A be the |E| x |V| node-arc incidence matrix of this graph, where
each row of A represents an edge of the graph, and each column represents a vertex. The matrix A
has two nonzeros in each column: a 1 at one of the vertices of the respective edge. and a -1 on its

other vertex. We define a binary variable p; for each vertex v; € V, so that

o 1 ifv,eWy
pi= 0 ifv, €V

where V; and V5, = V'\ V} denote the partitioning of V' that defines the cut. We also define a binary

variable ¢; for each edge, so that

1 ife; € C(Vi, VQ)
=
0 otherwise

The imbalance |W(Vy) — W (V2)| can be determined by only looking at one of W (V;) and W (Va),
since the weights sum up to 0, and thus W (V;) = —W(V4). Without loss of generality, we assume
W (V1) > 0. The inhibiting bisection problem can then be formulated as follows.

T

max P w (1)

P.C

st. Ap—c<0 (2)
Ap+c¢>0 (3)
el'c< B (4)
pi €{0,1} fori=1,2,...,|V]| (5)
¢ €4{0,1} fori=1,2,...,|F] (6)

Here, the objective function, W (V1) = pTw = ZLW p;w; maximizes the imbalance. Constraints
(5) and (6) guarantee that the p and c¢ are binary variables. In constraint (4), e refers to a vector
of all 1s, and thus efc = Z‘ill is equal to the cutsize, guaranteeing that the the cutsize is no more
than the specified limit. Constraints (2) and (3) are used to enforce any edge that connects the two
parts to be labeled as a cut edge. Consider an edge ey that goes from v; to vj;, for which we will

have the two constraints

pj—pi—ck <0 (7)
pj —Dpi+ckp >0 (8)

)

We need to show that ¢, = 1, if v; and v; are on different parts (p; # p;). If p; =1 and p; =0
(7) forces ¢ to be > 1. Symmetrically, If p; = 0 and p; = 1, it will be (8) that forces ¢ to be > 1
Thus, ¢ is marked with 1 if its end points are on different parts.

When the two vertices are in the same part, i.e., p; = pj, ¢ can be either zero or one. However,
since we try to limit the number of cut edges with (4), ¢ will be 1 only if removing an extra edge
does not increase the imbalance. Also note that the solution will still be feasible, even when an edge
is falsely marked as a cut edge.

This analysis further shows that, we do not need to impose ¢ variables to be binary explicitly.
When the edge e is on the cut, we need ¢ > 1, and when e, is an internal edge, c; will be at its
minimum due to constraint (4). In an optimal solution to (1)—(6), ¢ variables will naturally take

binary values, when they are constrained to be in the [0, 1] region. Therefore we can replace (6) with
0<¢ <1 fori=1,2,...,|E|

This improved formulation reduces the number of binary variables to |V|, whereas the initial formu-
lation employed |V'| + |E| binary variables.

The formulation in (1)—(6) corresponds to the cutsize constrained version of the inhibiting bi-
section problem. For the imbalance constrained version of the problem we can make the e’c the

objective function to minimize, and add another constraint as p'w > B.

3 Trade-off between Imbalance and Cutsize

The inhibiting bisection problem is naturally a dual objective problem. We need a bisection of
minimum cutsize with largest imbalance. While dealing with such dual objective problems, the
common practice is to move one of the objectives into the constraints, and look for an optimal solution
for the other, as we did in the previous section. An alternative way is to define a relative importance
of one objective with respect to the other and define a single objective function. For example we
can redefine the objective of the inhibiting bisection problem as (€)cutsize- (1 — €)imbalance, where
0 < e < 1 represents the relative importance of cutsize compared to the imbalance (notice that we
negate the imbalance to have a minimization problem). The disadvantage of this approach lies in
the difficulty of the definition of e. While it is hard to come up with an exact number for a dual
objective problem, this approach is very useful when the solution method is fast enough so that it
enables analysis of a whole spectrum for e.

In this section, we study this relaxed version of the inhibiting bisection problem, where we work
with a single objective function that includes both the imbalance and the cutsize of a bisection.
Surprisingly, this version of the inhibiting bisection problem can be solved in polynomial time, even
though the cutsize and imbalance-constrained versions of the problem are NP-complete. Our solution
to the dual-objective version of the inhibiting bisection problem uses a reduction to the maximum
flow/ minimum cut problem. Next we review the minimum cut problem, and then describe how the

inhibiting bisection problem can be solved using a maximum flow/minimum cut solver.

3.1 Maximum Flow/ Minimum Cut Problem

A flow network G = (V, E) is defined a set of vertices V', a set of edges E, where each edge (u,v) has
a nonnegative capacity c(u,v), and two special vertices: a source s and a terminal t. A flow in G is
a real valued function, f: F — R. We use f(u,v) to refer to a flow on the edge from vertex u to
vertex v. A single source vertex, s, is used, which is connected to all other vertices with production,
and the capacity of the connecting edge is equal to the production on that node. Similarly, only a
single terminal vertex, t, is used, which is connected to all other vertices with consumption, and the
capacity of the connecting edge is equal to the consumption on that node. We say a flow is feasible if
it respects conservation of flow and the capacity constraints on edges. Conservation of flow requires
that the total flow into a node is equal to total flow out of that node is equal. The value of a flow is
defined by the total flow leaving the source, and the maximum flow problem tries to find a feasible
flow with maximum value.

A closely related concept to maximum flow is the minimum cut in a graph. A cut in a graph
is defined by a bipartitioning of vertices V into S and T'= V' \ S, so that s € S and t € T. We
say an edge is on the cut is one of its end vertices is in S and the other is in T. The capacity of a
cut is defined as the sum of capacities of the edges on the cut, and a minimum cut is the one with
minimum capacity among all the cuts.

It is easy to see that the capacity of any cut is an upper bound the value of a maximum flow, since

the edges on the cut block all paths from the source to the terminal, and thus the total flow cannot
exceed their capacity. Clearly, the capacity of the minimum cut will provide the tightest bound
on the value of maximum flow. As one of the earliest and fundamental results in combinatorial
algorithms, Ford and Fulkerson proved that the capacity of a minimum cut is actually equal to the
value of a maximum flow. This duality between maximum flow and minimum cut underlies many
algorithms for flow problems. A more detailed discussion on network flow algorithms can be found
in [2,15].

3.2 Reducing the Inhibiting Bisection Problem to the Minimum Cut Problem

In this section, we show the relaxed version of the inhibiting bisection problem can be solved using

a maximum flow solver. Specifically, we try to solve the following problem.

Given a graph G = (V, E), with weights on its vertices, and a trade-off value 0 < e < 1.
Find o bipartitioning of V' into V1 and Va that minimizes

elC(V, Vo) = (1 = [W (V1) — W(Va)] (9)

Note that the imbalance entry is placed as a negative entry, since we have a minimization problem.

Given an instance of the inhibiting bisection problem with G = (V, E) and ¢, we define a flow
graph by adding a source vertex s and a terminal ¢ to the vertex set. We connect each generating
vertex v; (w; > 0) to the source vertex s and each consuming vertex v; (w; < 0) to the terminal
t. These new edges will help us encode the imbalance information in the edge capacities, so that a
minimum capacity cut in the new graph minimizes (9).

We define the capacity of each edge as the change in (9) when this edge is on the cutset of
the bisection. The imbalance is maximized when all generating vertices are on one part, and all
consuming vertices are in the other. In our construction, the edges between the source vertex and
the generating vertices pull the generating vertices to S in the minimum-cut bisection, and similarly,
edges between the terminal vertex ¢ and the consuming vertices pull the consuming vertices to 7.
Therefore, after the bisection, S corresponds to the generation-rich side, while T' corresponds to the
load-rich side. An edge between the source vertex and a generating vertex v; being cut means this
generating vertex is being placed on the load-rich side, which decreases the imbalance number by
2wj;, and the objective function by (1 — €)2w;, which we assign as the capacity of this edge. Similarly,
an edge between the terminal vertex and a consuming vertex v; being cut means this consuming
vertex is being placed on the generation-rich side, which decreases the imbalance number by 2w;,
and the objective function by (1 — €)2w;, which we assign as the capacity of this edge. If an edge
inherited from the original graph is cut, only the first term in (9) is affected, thus we assign € as the
capacity of each edge from the original graph.

A maximum flow solver can find a minimum capacity cut in this graph, which by definition

minimizes (9).

100 e
".M
a0 at

80 &
-
3 70
5
@ 60
o F 4
v 50 §
I 4
=40
S []
2 3
(0]
o

&
20!3
10

;
0

0

200 400 600 800 1000
Power Lines Destroyed

Figure 1: Inhibiting bisection analysis of the Western states grid with integer programming

100

=11

BO

0

&0

50
qv

30

Percent Imbalance

20 A
10

200 400 600 BOOD 1000
Cutsize

[=]

Figure 2: Inhibiting bisection analysis of the Western states grid with the relaxed formulation

4 Experimental Results

To validate the effectiveness of our proposed techniques, we have applied them on a benchmark
power system: a simplified model of Western states power grid, which has 13374 nodes and 16,520
power lines. We have applied the integer programming formulation in Section 2.3, and the relaxed
formulation, which can be solved with a maximum solver as described in Section 3.2. We have
used PICO (Parallel Integer and Combinatorial Optimization) [5], developed at Sandia National
Laboratories to solve the integer programming problems. As the maximum flow solver, we used the
implementation of the push relabel algorithm by Cherkassky and Goldberg [1].

The results are presented in Figure 1 and 2. In these figures, the z-axes correspond to the cutsize
and gyaxes correspond to the percent imbalance, which is computed as

|[W(V1)| % 100
Wr

where Wy represent the total production in the system, i.e., Wp = (3, |w;|)/2. Figure 1 presents

results for varying values of teh cutsize bound, whereas Figure 2 presents 1000 experiments with e
taking equal length steps from 0 to 1.

As expected, the imbalance of the cuts increase sharply with increasing cutsize at first (lower-left
portion), then starts to level off (middle portion), and then stays the same, when all generators are
isolated from the rest of the graph. The lower left portion of the figure shows system vulnerabilities
that can happen and cause a severe disturbance. Some of these cuts are trivial, and some are
already known by those who know the system while some others were surprises even for the system
experts. While the cuts in the middle of the figure are not as likely to happen, they provide
valuable information for finding fundamental weaknesses of the system. We observed that the cuts
in the middle of the figure are composed of combinations of smaller cuts, which can help us identify
critical load corridors in the system. These corridors may not be critical for the system at present,
but the system will be vulnerable if these corridors are not taken into account while the active
generators and their generation levels are being decided. The two formulations often identify the
same vulnerabilities, but the integer programming formulation is easier from a user’s perspective it
is easier to specify the problem.

We have performed our experiments with the minimum cut formulation on a computer with a 3.2
Mhz Xeons processor with 2MB cache. And each run of the minimum cut algorithm took only 0.3
seconds on average on the system with 13,374 nodes, and 16,520 edges. The IP solvers took much
more time as expected, but we are providing a detailed performance analysis here, since neither the

code was well-tuned, nor such a comparison is really necessary.

5 Conclusions

Many distribution systems such as the electric power, gas and water systems can be most naturally
represented as graphs. This enables adoption of graph theoretical techniques for the vulnerability
analysis of these systems. We introduced the inhibiting bisection problem, motivated by such a
vulnerability analysis. The inhibiting bisection problem seeks a subgraph with a significant gener-
ation/consumption mismatch, which is connected to the rest of the graph with a small number of
edges. We show that the constrained version of the problem, where we place either the cutsize or
the mismatch significance as a constraint and optimize the other, is NP-complete, and provide an
integer programming formulation. We also propose an alternative formulation, which can trade-off
between the two objectives, and show that the alternative formulation of the problem can be solved
with a maximum flow solver. Our experiments with benchmark electric power systems validate the
effectiveness of our methods.

This paper reports our initial results, and leaves some areas for future work. First we plan to
study the relation between the two formulations better. In particular, the relaxed version can be
used as an € approximation algorithm for the constrained version. What is more intriguing is the
relation between inhibiting bisection problem and the network inhibition problem. We are planning
to study how these problems relate to each other. Finally, we are planning to apply our techniques

to different graphs, especially those representing different distribution systems.

10

Acknowledgments

The authors would like to thank Vaibhav Donde, from ABB Inc., Juan Meza, Chao Yang from
Lawrence Berkeley Laboratory, Sandip Roy from Washington State University, Adam Reichert from

University of Illinois for many helpful discussions.

References

[1]

Boris V. Cherkassky and Andrew V. Goldberg. On implementing the push-relabel method for
the maximum flow problem. Algorithmica, 19(4):390-410, 1997.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 2001.

Vaibhav Donde, Vanessa Lopez, Bernard Lesieutre, Ali Pinar, Chao Yang, and Juan Meza.
Identification of severe multiple contingencies in electric power systems. IEEFE Transactions on

Power Systems. submitted.

Vaibhav Donde, Vanessa Lopez, Bernard Lesieutre, Ali Pinar, Chao Yang, and Juan Meza.
Identification of severe multiple contingencies in electric power networks. In Proceedings of the

37th North American Power Symposium, Ames, lowa, 2005.

J. Eckstein, W. Hart, and C. Phillips. Pico: An object-oriented framework for parallel branch-
and-bound, inherently parallel algorithms in feasibility and optimization and their applications.

Elsevier Scientific Series on Studies in Computational Mathematic s, pages 219-265, 2001.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, 2000.

Michael R. Garey, David S. Johnson, and L. Stockmeyer. Some simplified np-complete graph
problems. Theoretical Computer Science, 1:237-267, 1976.

Bruce Hendrickson and Robert Leland. The chaco user’s guide: Version 2.0. Technical Report
SAND94-2692, Sandia National Laboratories, 1994.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning

irregular graphs. In Proc. International Conference on Parallel Processing, pages 113-122, 1995.

Bernard Lesieutre, Sandip Roy, Vaibhav Donde, and Ali Pinar. Power sytem extreme event
screening using graph partitioning. In Proceedings of the 38th North American Power Sympo-
sium, Carbondale, Illinois, 2006.

F. Pellegrini. Scotch 4.0 users guide. Technical report, Research report Laboratoire Bordelais

de Recherche en Informatique, 2006.

11

[12] Cynthia A. Phillips. The network inhibition problem. In STOC ’93: Proceedings of the twenty-
fifth annual ACM symposium on Theory of computing, pages 776-785, New York, NY, USA,
1993. ACM Press.

[13] Ali Pinar, Vaibhav Donde, Bernard Lesieutre, Juan Meza, and Yonatan Fogel. Vulnerability

analysis of the electric power grid. Siam Optimization. to be submitted.

[14] R. Preis and R. Diekmann. The party partitioning-library, user guide - version 1.1. Technical
Report tr-rsfb-96-024, University of Paderborn, 1996.

[15] Robert E. Tarjan. Data Structures and Network Algorithms. Siam Press, 1998.

[16] C. Walshaw, M. Cross, and K. McManus. Multiphase mesh partitioning. Appl. Math. Modelling,
25:123-140, 2000.

12

